2）感染症 2
（2）母子感染（ウイルス1）

母子感染の特徴

1）母子感染の経路

母子感染の経路は、3つの場合に分けられる（表1）。

a）胎内感染：①母体が感染した場合、あるいは持続感染した微生物が再活性化した場合に、母体血を介して胎盤から臓器を通じ胎児に感染する。②胎盤に感染した微生物が増殖し胎児に感染する。③子宮頸部や陰から上行性に羊膜や羊水を介して感染する機序がある。

b）分娩時感染：従来の産道感染と胎盤からのもれ（placental leakage）に分けられる。

b-1）産道感染：①子宮頸部、陰、外陰部などに感染している微生物が分娩時に産道内で胎児の粘膜などから感染する。②産道内の母体血中の微生物が胎児の粘膜などから感染する。

b-2）placental leakage：B型肝炎ウイルスやHIVの胎内感染率が切迫早産既往群に多いことから推定された。母体血の新生児血中への混入量を胎盤性アルカリファスファターゼを指標として測定した場合、予定産切群で0.8mL/kg（新生児体重）、経膣分娩群で1.2mL/kgと有意差があるという報告もある。

c）経母乳感染：母乳中の微生物や感染リバサ球が経口的に胎児に感染する。サイトメガルウイルスは経母乳感染をするが、成熟児はこの感染により自然免疫を得て、成人してから初感染することは防げる。しかし、1,500g未満の低出生体重児では経母乳感染により、肝炎などを発症する可能性がある。

2）胎児の特異性

母子感染が水平感染と相違する特徴は、胎児の特異性にある。表2に胎児の特異性をまとめた。

Mother-to-child Infection: Virus 1
Toshiyuki KOJIMA
Department of Obstetrics and Gynecology, Mitsui Memorial Hospital, Tokyo
Key words: Mother-to-child infection · Transmission route · Daccine Listeria · Toxoplasma
（表1） 母子感染の経路と主な病原微生物

<table>
<thead>
<tr>
<th>経路</th>
<th>終末感染</th>
<th>胎児への感染</th>
<th>主な病原微生物*</th>
</tr>
</thead>
<tbody>
<tr>
<td>胎内感染</td>
<td>細胞間感染</td>
<td>母体血中の微生物が胎盤を介し胎児血液に移行</td>
<td>HBV, HCV, HIV, HTLV-1, バルボウイルス</td>
</tr>
<tr>
<td></td>
<td>母体血中の微生物が胎盤で増殖し胎児血液に移行</td>
<td>トキソプラズマ, 風疹ウイルス, マイコプラズマ, CMV, HSV, ムンプスウイルス, インフルエンザウイルス, リステリア, 結核菌</td>
<td></td>
</tr>
<tr>
<td>上行感染</td>
<td>子宮頸部-膀胱感染する微生物が羊膜-羊水等を介して胎児に移行</td>
<td>GBS, リステリア</td>
<td></td>
</tr>
<tr>
<td>分娩時感染</td>
<td>胎児感染</td>
<td>産道内に感染する微生物が胎児に移行</td>
<td>GBS, 淋菌, クラミジア, CMV, HSV, HIV, リステリア</td>
</tr>
<tr>
<td></td>
<td>placental leakage</td>
<td>産道内の母体血中の微生物が児に移行</td>
<td>HIV, HBV, HCV</td>
</tr>
<tr>
<td>経母乳感染</td>
<td>母乳中から経口的に児に移行</td>
<td>HTLV-1, HIV, CMV, HBV**, HSV**, 風疹ウイルス**</td>
<td></td>
</tr>
</tbody>
</table>

*：感染経路を重複して有する微生物や、経路が確定していない微生物もある。
**：母乳による一過性感染がある。
【略号】HBV: hepatitis B virus (B型肝炎ウイルス), HCV: hepatitis C virus (C型肝炎ウイルス), HIV: human immunodeficiency virus (ヒト免疫不全ウイルス), HTLV-1: human T lymphotrophic virus type 1（成人T細胞白血病ウイルス1型）, HSV: herpes simplex virus（単純疱疹ウイルス）, HPV: human papillomavirus（ヒト乳頭腫ウイルス）, CMV: cytomegalovirus（サイトメガロウイルス）

（表2） 母子感染における胎児の特異性

<table>
<thead>
<tr>
<th>特異性</th>
<th>変化</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>微生物が胎盤を介し経胎盤的に侵入する</td>
</tr>
<tr>
<td>2)</td>
<td>胎児形態に感染すると, 胎児が形態異常を呈することがある</td>
</tr>
<tr>
<td>3)</td>
<td>胎児の免疫能が未熟である</td>
</tr>
<tr>
<td>4)</td>
<td>胎児がキャリアとなることがある</td>
</tr>
</tbody>
</table>

妊娠へのワクチン使用法

妊娠への破傷風ワクチン接種は禁忌であるが, 死菌ワクチン, 不活化ワクチン, トキソイドは体内では増殖せずしたがって胎児には感染しないので妊娠でも使用は可能である（表3）, しかし胎児に対する安全性は未確認なので, 妊娠中のワクチン接種の症例は, 感染のリスクが高い場合あるいは感染により重症化する合併症を有する場合に限られる。感染のリスクが高い場合とはポリオ, 黄熱, 日本脳炎, 破傷風などの流行地に行く場合と HBe 抗原陽性者からの針刺し事故の場合のことである。感染により重症化する合併症を有する場合とは, インフルエンザにより重症化する呼吸器合併症などを有する場合をいう。

妊娠中に風疹, 麻疹, 水痘などの抗体を保有していないことが判明した場合には, 分娩後にワクチン接種を行うことが望ましい。

また弱毒ワクチンなどの同居家族への接種は, 妊娠が重篤な免疫不全状態になければ, 弱毒ワクチンでも接種者から妊娠に感染することなく問題ない。
(表3) 日本で接種可能なワクチンと妊娠への接種

<table>
<thead>
<tr>
<th>疫</th>
<th>疫病</th>
<th>分類</th>
<th>妊娠への接種の原則</th>
<th>妊娠前接種後避妊期間</th>
<th>妊娠への適用</th>
<th>児への副作用</th>
<th>誤接種の中止の適用</th>
<th>家族の接種</th>
</tr>
</thead>
<tbody>
<tr>
<td>ボリオ</td>
<td>麻疹</td>
<td>不適当</td>
<td>流行地への渡航時</td>
<td>確認された危険なし</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>風疹</td>
<td>定期接種</td>
<td>不適当</td>
<td>1カ月間</td>
<td>確認された危険なし</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCG</td>
<td></td>
<td>有益時ののみ</td>
<td></td>
<td>報告なし</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ムンブス</td>
<td>任意接種</td>
<td>1カ月間</td>
<td></td>
<td>確認された危険なし</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>水痘</td>
<td>黄熱</td>
<td></td>
<td>流行地への渡航中止が不可能であれば渡航時</td>
<td></td>
<td>不明</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPT/DT1</td>
<td>日本脳炎</td>
<td>定期接種</td>
<td></td>
<td>確認された危険なし</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>旅行地への渡航時</td>
<td></td>
<td>不明</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>インフルエンザ</td>
<td></td>
<td>流行時15週以上で</td>
<td>2,000例で</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>なし</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A型肝炎</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B型肝炎</td>
<td></td>
<td>eAg(+)の指針に基づく</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>予防</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>狂犬病</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>コレラ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>肺炎球菌</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ワイフ病状やみ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>破傷風トキソイド</td>
<td></td>
<td>流行地への渡航時に</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>リウマチトキソイド</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>はぶトキソイド</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) DPT：1980年までは全菌体百日咳ワクチンを含む百日咳・ジフテリア破傷風混合ワクチンをいい、1981年秋以降は無菌体百日咳ワクチンを含む沈降精製百日咳・ジフテリア破傷風混合ワクチン（DTaP）をいう。DT：百日咳・ジフテリア混合ワクチン
2) 米国では、基礎免疫のない妊娠や10年以上追加投与を受けていない妊娠には、破傷風・ジフテリアトキソイドの接種が推奨されている。
母子感染症

1）風疹ウイルス
先天性風疹症候群（congenital rubella syndrome：CRS）の発生は、2000年からの3年間は全国で毎年1例に減少し、ワクチン接種の効果と考えられる。しかし1986年生まれの女性では風疹抗体保有者が約55％と他の年齢層に比べて極端に低く、さらに1970年4月2日～1987年10月1日生まれの世代ではワクチン接種率が約60％と低く、先天性風疹症候群の児の出生がこの年代に増加することが懸念される。

妊娠中の風疹再感染による先天性風疹症候群を含むCRSの発生率について1980～90年代、我が国でCRSは年間平均20例程度確認されており、妊娠中の再感染が確認された例は同時期に平均1例程度である。なお、妊娠中の再感染が確認されていない例は1980年からの3年間で毎年1症例しか報告されていない。単純計算すれば、再感染によるCRSの発生数は年間0.05例となり、かなりまれと考えられる。

2）サイトメガロウイルス
妊娠中のサイトメガロウイルス抗体保有者は最近20年間で95％から70％に低下を続けており、未感染者は5％から30％へと6倍に増加し、それに伴い妊娠中の初感染の確率も増大していると考えられる。

3）麻疹ウイルス
麻疹は、韓国や中国の由来株であるH1株が2000年に東京で検出されて以来、国内各地で検出された（ワクチン接種歴があるにもかかわらず）2003年に岩手県では中学と高校で集団発生（outbreak）があり、各々生徒総数の約10％が感染した。母子手帳で確認したワクチン接種歴にある生徒の11.3％と、接種歴のない生徒の13.5％が感染し、両者に有意差を認めなかった。したがって妊娠中のこのような集団発生にさらされる可能性がある。

また、ワクチン未接種のためや保持抗体が低いため再感染を起こす（secondary vaccine failure）成人麻疹が増加しており、20歳代前半に多い。周囲での流行がある場合、妊娠中の麻疹抗体価を測定し、再感染の可能性を調べることも必要となるよう。

4）肝炎ウイルス
肝炎では、A型肝炎が増加しており、妊娠の魚介類の生食は注意を要する。また鹿などの野生動物の生肉摂取によるC型肝炎の発生が2003年に日本で報告され、妊娠も野生動物の生肉摂取を控える必要がある。

C型肝炎ウイルスに関して、2000年のLancetに「破水の前の人蔘的帝王切開術施行例は、症例分類染や産後帝王切開術施行例に比べ、母子感染率が有意に低値であった」と報告された。しかし、もしエビデンスが得られたとしても、ただちにHCVキャリアの分類を帝王切開術とする根拠にはならない。その理由は、経歴分類して母子感染した児の長期病後の不良が不明であるからである。現時点でHCVキャリアの分類を帝王切開術とするコンセンサスは得られていない。

5）ヒトパピローマウイルス
尖圭コンジローマは、新生児の多発性咽頭頭顔腫を生じることがあるとされているが、最近注目されているのは、若年性再生性気管頭顔腫である。母子感染率は1～3％で、7歳までに発症する。帝王切開術を行っても感染することがあるので、分娩前に治療しコンジローマが消失すれば経歴分娩を行い、分娩時に産道にコンジローマが残存する場合は帝王切開術を考慮する。
(表4) 同胞の先天性トキソプラズマ症症例

<table>
<thead>
<tr>
<th>症例</th>
<th>診断年齢</th>
<th>トキソプラズマIgG抗体</th>
<th>ブラチリアII トキソIgM®</th>
<th>眼底所見</th>
<th>頭部CT</th>
<th>母体トキソプラズマIgG抗体</th>
<th>母体ブラチリアII トキソIgM®</th>
<th>母体トキソプラズマIgG抗体のアビディテイ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5歳8か月</td>
<td>26IU/ml</td>
<td>0.6（陽性）</td>
<td>右側眼炎の所見</td>
<td>異常なし</td>
<td>245 IU/ml</td>
<td>1.6</td>
<td>46.1%</td>
</tr>
<tr>
<td>2</td>
<td>8歳</td>
<td>240 IU/ml</td>
<td>0.1（陽性）</td>
<td>左側眼炎の所見</td>
<td>異常なし</td>
<td>130 IU/ml</td>
<td>1.3</td>
<td>46.6%</td>
</tr>
<tr>
<td>3</td>
<td>11か月</td>
<td>PHA : 1,280 × 1（十）</td>
<td>0.8（判定保留）</td>
<td>異常なし</td>
<td>異常なし</td>
<td>230 IU/ml</td>
<td>1.9</td>
<td>14.9%</td>
</tr>
<tr>
<td>4</td>
<td>2歳11か月</td>
<td>130 IU/ml</td>
<td>0.1（陽性）</td>
<td>異常なし</td>
<td>未施行</td>
<td>410 IU/ml</td>
<td>0.8</td>
<td>25.9%</td>
</tr>
<tr>
<td>5</td>
<td>4歳4か月</td>
<td>360 IU/ml</td>
<td>0.3（陽性）</td>
<td>異常なし</td>
<td>異常なし</td>
<td>1,330 IU/ml</td>
<td>2.4</td>
<td>53.1%</td>
</tr>
</tbody>
</table>

症例1,2は軽症特に先天感染, 3～5は不顕性先天感染である。

6）リステリア菌

リステリア菌は、カマンペルチーズ、ブルーチーズ、低温殺菌牛乳など滅菌されていない乳製品、未加熱の食肉、土、水、便、歯分泌物、精液、口腔咽頭分泌物などに存在する。健康人の便の1～5%に検出される。人獣共通感染症である。臨床経過は、妊娠婦、悪寒、頭痛、発熱、インフルエンザ様症状を発症し、数日後から切迫流産、早産兆候が出現し急速に分娩に至り、子宮内胎児死亡を生じたり、新生児敗血症・髄膜炎など生じる。白血球増多など細菌感染を疑わせるので、リステリア症を念頭に置くことが最も重要である。血液、尿、経分泌物培養を行い、ベニシリン系抗生剤を点滴静注する。培地でリステリア菌が検出されれば、ただちに急速遠隔療（帝王切開術）を行う。新生児は、易感染性で死亡率は50%に達するので、児の細菌培養の結果を待つべくベニシリンを点滴静注する。母子感染の予防には、母体のリステリア症の早期診断が必要である。

7）トキソプラズマ

TORCH症候群の一つである先天性トキソプラズマ症は本邦にはほとんど存在しないとされていた。ところが最近小児科などより先天性トキソプラズマ症の症例報告が増加し、その見直しの時期が来ているといえよう。加熱処理の不十分な肉（馬肉、牛肉、鶏肉、鹿肉、レバ肉、鹿肉、レアステーキなど）に生存するシスト、土や猫の糞に存在するオーシストから水平感染し、初感染した妊娠婦から胎児に胎内感染し、児に水頭症や脈絡膜脈炎を生じる。感染時期が妊娠中か妊娠中かを診断することが、臨床上非常に重要となる。基本的には妊娠中の初感染の場合のみ母子感染の可能性が出現する。最近、トキソプラズマIgG抗体のアビディテイ（抗原結合力）を測定することが可能となり、そのアビディテイは時間とともに強力になることを利用し、感染時期が4カ月以内か否かが診断できるようになってきた。これを用いるとトキソプラズマIgM抗体陽性妊娠の約80％は、妊娠前感染と診断され、必要な中絶や羊水診断、薬物療法を回避することができると報告されている。また、トキソプラズマIgM抗体陽性妊娠の既に生まれている同胞の10％（5/50例）に先天
感染を認め、先天感染例の40％（2/5例）に網膜発症を認め、わが国でも未治療妊娠では40％に軽症顕性先天感染することが確認された（表4）。わが国での、先天感染の頻度は、都市圏での頻度から少なく見積もって、約0.05％（年間600人）と推定されている。